
T
.

.
T ELEMETRY M ONITORING AND D ISPLAY USING LA BV I E W*

by

George,Wells, Member of Technical Staff
Edmund C. Baroth, Ph.D. Manager of the Measurement Technology Center,

Jet Propulsion Laboratory, California Institute of Technology

* The research described in this paper was carried out by the Jet propulsion Laboratory, California Institute of Technology,
under a contract with the National Aeronautics and Space Administration.

Abstract

The Memurement Technology Center of the Instrumentation Section configures automated data acquisition systems
to meet the diverse needs of the Jet Propulsion Laboratory’s (JPL’s) experimental research community. These systems are
based on personal computers or workstations (Apple, IBM/Compatible, Hewlett-Packard and Sun Microsystems) and often
inch.rde integrated data analysis, visualization and experiment control functions in addition to data acquisition capabilities.
These integrated systems may inch:d.c sensors, signal conditioning, data acquisition interface cards, software, and a user
interface. Graphical programming is UZC+! to simplify configuration of such systems.

Employment of a graphical programming language is the most important factor in enabling the implementation of
data acquisition, analysis, display and visualization systems at low cost. Other important factors are the use of commercial
software packages and off-the-shelf data acquisition hardware where possible. Understanding the experimenter’s needs is also
critical. An interactive approach to user interface construction and training of the operators is also important.

An example of a telemetry monitoring and display application using two Macintosh computers and a graphical
programming language (National Instruments’ LabVIEW 2) will be discussed. One computer acted as the tclcmctry source
and the other as the analyzer. The telemetry stream was emulated using interface boards in the computers. A schematic of the
system and user interface panel will be presented. The computer programs will also be discussed as to ease of creation. The
purpose of this paper is to show how using graphical-based programming software can be used for advanced data analysis
like telemetry monitoring and display, as well as for emulation of a telemetry stream.

This application was created as a result of a ‘competition’ between a graphical programming language team and a
text-based (’C’) programming Mm to verify the advantages of using a graphical programming language approach. With
approximately eight weeks of funding over a period of three months, the text-based programming team accomplished about
10% of the basic requirements, while the Macintosh/LabVIEW team accomplished about 150%, having gone beyond the
original requirements to simulate a telemetry stream and provide utility programs. This application verified that using
graphical programming can significantly reduce software development time, As a result of this initial effort, additional
follow-on work was awarded to the graphical programming team.

Introduction

As part of the Instrumentation Section, the Measurement Technology Center (MTC) evaluates data acquisition
hardware and software products for inclusion into the Instrument Loan Pool for JPL experimenters. As such, it acts as a focus
for off-the-shelf data acquisition, analysis and display hardware and software, including graphical programming software.

Using graphical progmmming software and off-the-shelf hardware, the MTC configures turn-key data acquisition
systems customized to users’ requirements. These systems include transducers, data storage capability, and a user intcrfacc.
They may also include integrated data analysis, visualization and experiment-control functions in addition to data acquisition
capabilities.lz The MTC supports systems based around IBM-compatible and Apple Macintosh personal computers, plus
Hewlett-Packard and Sun Microsystems workstations, The advantages of graphical programming Ianguagcs have been the
key to configuring systems within a reasonable time and cost. Graphical programming has literally changed the way the
Instrumentation Section does business. It has changed the way industry does business as WCII.3.45

.

TELEMETRY Monitoring AND DISPLAY USING LABVIEW
by George Wells& Edmund C. Baroth

- .=

Due to our background in graphical programming languages, the MTC was approached to create a telemetry
analyzer, using the Macintosh and LabVIEW. A similar task was given to another group using text-based coding (in ‘C’) on a
Sun and a single-board computer. Both groups were given equal time and funding levels. The purpose’was to determine if the
LabVIEW software environment was up to the task of telemetry stream decommutation and decoding and to verify the
advantages of graphical programming over text-based programming.

The advantages of graphical programming languages over text-based programming are numerous. The ability to
collapse code using many icons to form a single icon allows applications to be created which are both custom and modular.
On-line documentation is current because the diagram is the program and reflects the latest changes.

A major benefit is that user-programmer-computer communication is substantially improved because the user can
‘read’ the code. Use of graphical programming languages encourages a much more interactive process between user and
programmer, reducing the time to produce both code and the number of iterations to satisfy the user. An additional benefit is
changes to the program can be incorporated much more easily than using text-based programming. The users themselves can
be trained to make the changes.

These benefits add up to an environment that can reduce software development by at least a factor of four. The costs
for system development, configuration, documentation, training and operating can also be substantially reduced due to the
Ixmefits listed.

The real potential of graphical programming, however, is the ability to go from conception to simulation of
components, sub-systems and systems, to testing of actual hardware and control functions using a single software
environment (on multiple platforms). Modules or icons that represent simulations of instruments, processes or algorithms can
be easily replaced with the actual instruments or components when they become available. That potential was demonstrated
in this application, as first the telemetry generator and analyzer were simulated in one computer, then were split to emulate
the actual telemetry stream,

oMac Itfx Telemetry Telemetry
Generator Analyzer

LabVIEW

o ,

Quadra 950

DMA board

J.

D/A board
DMA board

LabVIEW A/D board

Clock & data lines

Figure 1. System Schematic

Figure 1 is the system schematic. Two Macintosh computers were used, a Mac Hfx and a Quadra 950. The Mac IIfx
was used to ~encrate the telemetrv stream usirw the two D/A converters on the NB-MIO- 16-XH board. The Quadra 950
functioned a;the telemetry analy~r using the A-P converter on a similar board to capture the data channel triggered by the
clock channel. The double buffering capabilities of the NB-DMA2800 boards were used to support continuous telemetry.

The original requirement and expectation for the task was to usc one computer for simulation and analysis of the
telemetry channel (using global variables) but because that requirement was met long before the deadline, the actual
generation of the telemetry channel was done. The separation of the generator and anaIyzer into two separate computer
systems was done to more closely approximate the real environment and to allow more precise measurement of performance
parameters.

The telemetry data stream consists of a two4ine serial interface (data and clock). Although it only needs to operate
at 200 bits per second, it was tested at up to 5000 bits per second to measure the CPU margin.

.

.,
TELEMIxRY MoNITORING AND DISPLAY USING LABVIEW
by George Wells& Edmund C. Baroth

. 0 1
ID=9

fO=8 I
10=7

h—la
223 *S of data (mcludmg imtrumcti

L Iu 1 . ID and SCQucncc numb)
,“- ,

10=5 1 , C4nstituica * qnlmt
for each Mnmm!

fD=4
3 I

:::;::::fi::!:::y:::::.:.:.:.:.:.:.:w,...........,.,., ~:}. ,,\.......::,:::,:: ,’::.,,. [atzzzlczlE2.zzIl[

pEi’JrE.mtE?saa~~

Predict ~-w~
Tabka - Random sim PA*

- at runhnl time inmlvals

I foremhinstnmm1

Gle Frame J 8X 2S6 byta 8 .wgmmts + PN sync + Reed-Solanon cmstkutcs a frame

Figure 2. Telemetry Generator Sequence

Telemetry Generator

There was no actual requirement for a telemetry generator, only an analyzer. The generator was created to test the
analyzer. Figure 2 is the Telemetry Generator Sequence. The source of the data is pre-determined ‘Predict Tables’ containing
random bytes. For each instrument there is a separate table. These tables are stored in both the generator and the analyzer
computers. The overall approach is that each instrument sends packets of up to 220 bytes at random intervals of time and
eventually these packets are picked up by the analyzer and verified in its Predict Tables. Packets that are received out of
sequence or are not present in the Predict Tables will register as errors. It is a verification of the transmitting and receiving
process, not the data itself.

The entire telemetry scheme can be thought of as having an independent channel for each instrument. Packets from
an instrument are not actually sent until enough are received to fill a segment of 223 bytes (including some overhead). A
Reed-Solomon error-correcting code of 32 bytes is appended to each segment and when eight segments are assembled (not
necessarily from the same instrument), an eight-byte PN Sync word is attached. The bytes are sent starting with the PN Sync
word and continue through the first byte of each segment followed by successive bytes of each segment. Before actually
being sent over the telemetry channel, the stream is run through a convolution algorithm which provides additional error-
correcting capabilities but doubles the number of bits.

The implementation of the various algorithms (e.g., Reed-Solomon and Convolution Coders) has traditionally been
done in hardware using shift-registers, ex-OR gates and counters. The close analogy of LabVIEW’s icons to actual circuitry
embles erwy and straight forward implementation of otherwise complex coding.

Figure 3 is the Front Panel for the telemetry generator. The range of packet sizes and time intervals can be specified
for each instrument as WC1l as the data rate. As each packet is generated, it is displayed on the strip chart as a dot. For
example, Instrument ID= O attempts to output a packet of between 2 and 4 bytes every 1/6 of a second, while ID = 1 attempts
to output packets containing between 20 and 132 bytes every 1 to 2 seconds. These rates are limited by the Bit Rate set on the
front panel. Two types of errors can also be created to test the diagnostic capabilities of the analyzzr.

TELEMETRY MO~ORING AND DISPLAY USING LAIIVIEW
by George Wells& Edmund C. Baroth

-J
“ . 10

:
7
6
5
4
3
2

,1
0 m

Figure 3. Telemetry Generator Front Panel

—..

E3-

II$+--i::::,

~
m..., MfjiiiJp ,W

gi’g&’-E9! m-. .,.. :

,’

TELEMETRY MONITORING AND DISPLAY USING LARVIEW
by George Wells& Edmund C. Baroth

Figure 4 is the diagram for the telemetry generator. It is responsible for temporarily storing the packets from each
instrument until enough are available for a segment, at which time the ‘Send Segment’ VI (Virtual Instrument) is executed.
This VI eventually calls the ‘Calc Reed Solomon’ VI shown in Figures 5 & 6 which implements all of the circuitry shown in
Figure 7, but in a more general sense, in that the shift registers are put into a loop. The coefficients and RS Table are
mxnmnently stored m default values on the front panel. Notice how compact the block diagram is compared to the schematic
“which it em-ulatcs.

,

I Segment size (Bytes)l

Im=-1

RS Tablel

Figure 5. Calculate Reed-Solomon Front Panel

\Coefficients~. .

WV

Figure 6. Calculate Reed-Solomon Diagram

After a complete telemetry frame is assembkxl, the bits are passed through a convolution coder which doubles the.= . .
number of bits. The diagram in Figure 8 implements the hardware clrcumy shown m b’igure 9. The bits are eventually
doubled again (so that each bit is present for two clock times) and used to control two voltage levels (zero and five volts) on
onc channel of the double-buffered D/A converter. The other channel generates an alternating bit pattcm to form the clock.
This completes the description of the Telemetry Generator.

TELEMETRY Monitoring AND DISPLAY USING LABVIEW
by George Wells& Edmund C. Baroth

Note: All data lines are byte-wide I
-

o u t p u t

El
= Shift register @= Reed-Solomon Multiplication @= Exclusive OR

Done with look-up table

Figure 7. Reed-Solomon Circuitry

Figure 8. Diagram of Convolution Coder

,

.
TELEMETRY Monitoring AND DISPLAY USING LABVIEW
by George Wells& Edmund C. Baroth

. ___

I Note All data lines are bit-wide I I= Shift register @= Exclusive OR
1 5 a

Figure 9. Convolutional Coder Circuitry

Telemetry Analyzer

The Telemetry Analyzer uses the double-buffered analog input with samples taken on each falling edge of the clock.
Each analog sample is immediately converted to a Boolean by a simple comparison test and passed through the convolution
decoder shown in Figure 10 which implements the circuitry shown in Figure 11. Higher level VI’s can request any number of
bits from the convolutional decoder, but normally only half the bits are used. The bits come out in two separate arrays but
only one of them is significant. The correct one is the one that contains the PN Sync word so the Get Sync VI shown in
Figure 12 must search for the PN Sync word in both arrays. If it finds it in the second array, it reads and discards one more bit
so-that the remainder of the frame is read from the first ~ay.

. .

Figure 10. Diagram of Convolution Dccodcr

Even
Bits

Odd
B i t s- -

Note: All data lines are bit-wide
n

= Shift register @ =ExclusivcOR

Figure 11. Convolutional Decoder Circuitry

.
TELEMINRY MONITORING AND DISPLAY USING LAF3VIEW
by George Wells& Edmund C, Baroth

.=

.—

. —.-

——

$-J

t-----+ +------

~~—P-1,,:,, ——. — “&--—

h ~----L-

lits be-
‘or* q m

E51’”

Figure 12. Diagram of Get Sync VI

The remainder of the Telemetry Analyzer basically performs the same functions that the Generator performs but in
the opposite order. The same Reed Solomon calculations are done on each segment but instead of correcting errors they are
simply flagged on the front panel (Figure 13). The header information from the packe~s is then stripped away and the data
compared to the Predict Tables and appropriate error flags set. The VI has front panel logging turncxi on so that the status
from each frame can be saved to disk. Each frame will have status information for eight segments including the Instrument
ID, the current sequence number, the previous sequence number, error flags to indicate if the Reed-Solomon code is
incorrect, if the sequence is not properly incremented, if the packet bytes were found in the Predict Table but not in the proper
place, and if the packet bytes were not found in the Predict Table. The strip chart indicates which Instrument ID’s each of the
eight segments go with but it is not useful for data logging since only the last segment of each frame will be logged. Several
other parameters relating to the frame itself are also indicated at the top of the front panel including the frame count, the
number of bits found before the PN Sync code (which should always b zero after the first frame), the current time, the actual
data rate, and finally the percent margin assuming a data rate of 2000 bits per second. All testing was done at tcn times the
targeted rate to save testing time.

Several utility VI’s @lgure 14) are available to read the previously logged data, even while logging is in progress.
Among these are a monitor to graph any of the parameters on the front panel against any of the others, e.g., to plot the bit rate
against the frame coun~ a monitor to indicate Instrument ID utilization in the form of a bar graph; and a scrolling graph to
display Instrument ID’s as a function of real time,

Conclusions

With approximately eight weeks of funding over a period of three months, the text-based programming team
accomplished about 10% of the basic requirements, while the Macintosh/LabVIEW team accomplished about 150%, having
gone beyond the original requirements to simulate a telemetry stream and provide utility programs. LabVIEW was shown to
perform advanced data analysis tasks such as telemetry stream emulation and monitoring plus display. It atso validated the
graphical programming approach, as well as an interactive approach to user interface construction. This task succeeded in
convincing people that graphicat programming can significant y reduce software development time compared to text-based
programming. It resulted in follow-on work for the Macintosh/LabVIEW team.

TELEMETRY MONITORING AND DISPLAY USING LABVIEW
by George Wells& Edmund C, Baroth

. .=

Figure 13. Tclcrnctry Analyzer Front Panel

L.

TELEMETRY Monitoring AND DISPLAY USING LABVIEW
by George Wells& Edmund C. Baroth

Figure 14a. Bit Rate vs. Frame Count Figure 14b, Instrument ID Utilization

Figure 14c. Instrument ID vs. Real-Time

References

1,

2.

3.

4.

5,

An Adaptive Structure Data acquisition System using a Graphicul-Based Programming Language, E. C. Baroth, D. J.
Clark and R. W. Losey, Fourth AIAA/Air Force/NASA/OAI Symposium on Multidisciplinary Analysis and
Optimization, Cleveland, Ohio, September 21-23,1992.
Acquisition, Analysis, Control, and Visualization of Data Using Personal Computers and a Graphical-Based
Programming Language, E. C. Baroth, D. J. Clark and R. W. Loscy, Conference of American SOcicly of Engineering
Educators (ASEE), Toledo, Ohio, June 21-25, 1992.
Au[omated RF Test System for Digital Cellular Telephones, G. Kent, Proceedings from NEPCON West ’93, Anaheim,
CA, February 7-11, 1993, pp 1055-1064.
Sequenlia/ File Crea[ion for Automafed 7’es[Procedures, J. R. Henderson, Procccdings from NEPCON West ’93,
Anaheim, CA, February 7-11, 1993, pp 1065-1077.
Cut(ing Costs the Old Fashioned Way, S. C. Jordan, Proceedings from NEPCON West ’93, Anaheim, CA, February 7-
11, 1993, pp 1921-1931,

